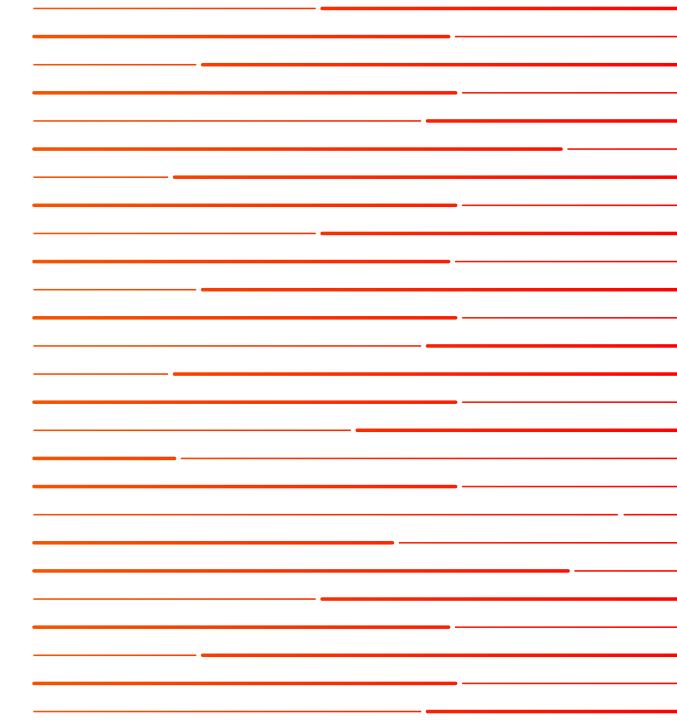


Building Trust in the AI Era of Enterprise Analytics: From Data Integrity to Insight Acceleration

> Anusha Dwivedula Aug 2025



We are the global leader for investor-first insights, tools, and investment strategies, trusted by market participants worldwide. Our system

of capabilities, connected through data and insights, is driven by our mission to empower investor success.

Shared language put to work across our broad reach

Individual Investors

4.2M individual investors

3.7M retirement plan participants

Financial Advisors

300,000 financial advisors

Debt Issuers

4,100 debt issuers

Retirement Plan Providers

319,000 retirement plan sponsors

Asset Managers

3,500 asset management firms

Private Market Participants

112,000 PitchBook users

INFLUENCERS

Fintechs & Redistributors

925 global alliances

Regulators

70 regulators globally

Media Companies

130 media companies

Data as of Q3 2024

Recent Al Trust Failures

Why Delta Air Lines Is Facing Backlash for AI Pricing

Aug 06, 2025

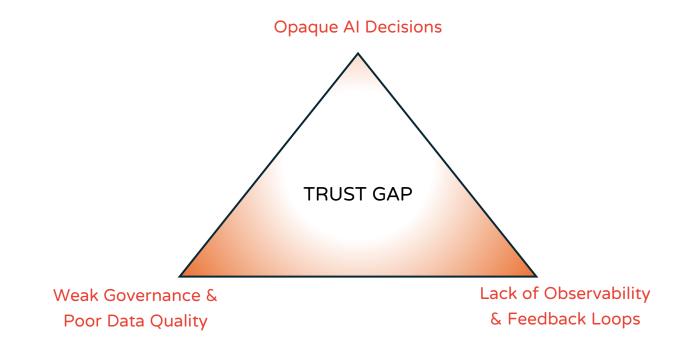
Airlines Delta Air Lines Opinion Technology Travel News

New Al tool picks up every minor scratch on your car rental – and its freaking people out

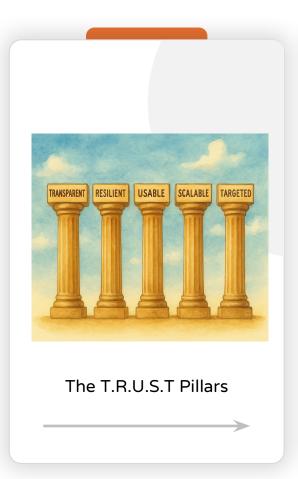
James Liddell

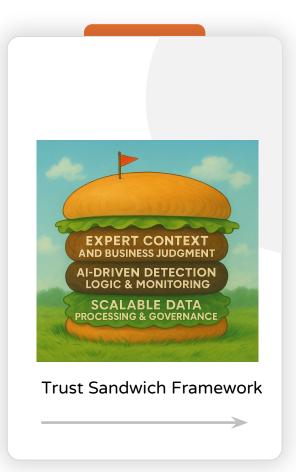
Thu 10 July 2025 at 11:05 am GMT-5 3 min read

The Common Thread - The Thing Nobody Talks About Until It's Gone



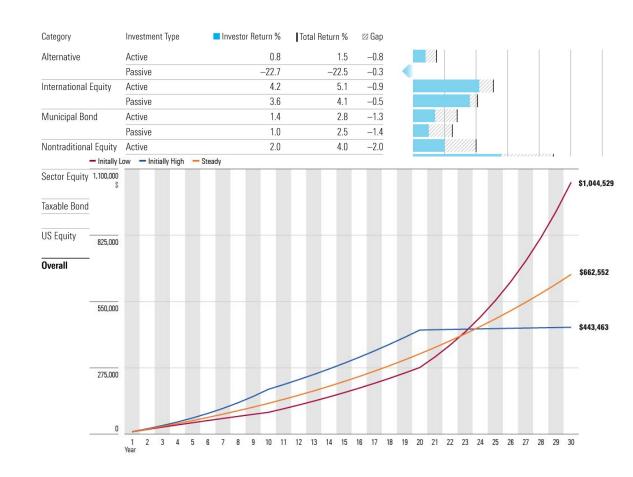
How do you Build Trust in the Al era of Enterprise Analytics?





Morningstar Total Return Index

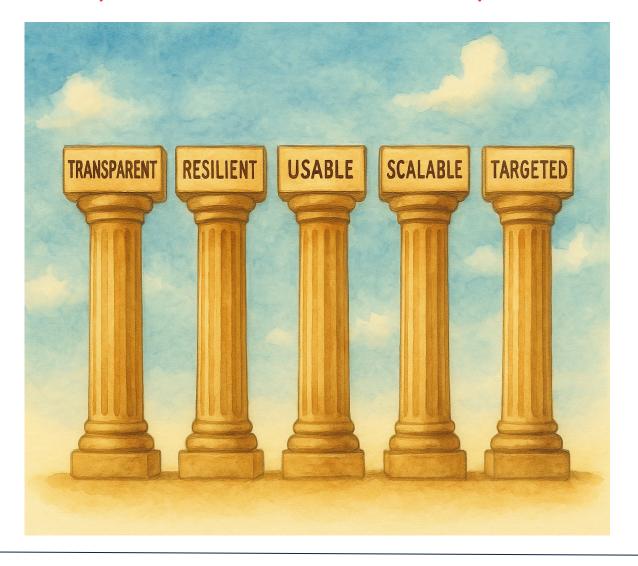
- Total return of a fund by tracking the change in net asset value (NAV), reinvesting all income and capital gains distributions, and dividing by the starting NAV.
- Measure the performance of a fund over time, including both price appreciation and the reinvestment of dividends and distributions
- ☐ Various applications Fund and Category Performance, Benchmarking and Investable Products.
- Errors can break client confidence or create regulatory risk.
- Consumers expect to get access to the data within 15 minutes after market



Al-driven quality system

"We needed a system that could be accurate, fast, and trusted—at scale."

The T.R.U.S.T five pillars of confidence in production systems



The T.R.U.S.T five pillars of confidence in production systems

Transparent — You can trace every decision and every datapoint.

Resilient — It adapts to change and handles uncertainty

Usable — Alerts and insights are clear, actionable, and

aligned with how teams work. Scalable — It can handle large, complex, fast-changing systems

without slowing down.

Targeted — The system focuses on what matters—no noise,

just meaningful signals.

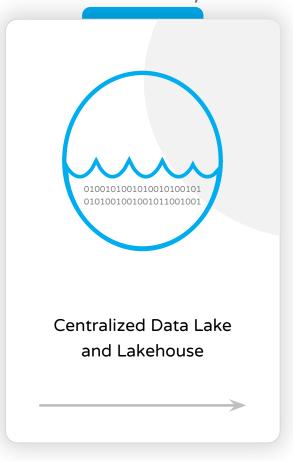
Introducing the TRUST sandwich framework

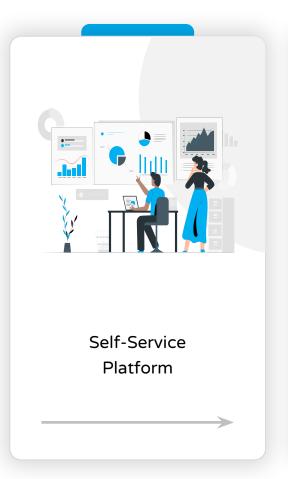
- Trust isn't built in one place.
- It's a layered system—like a sandwich—where infrastructure, logic, and human validation work together.

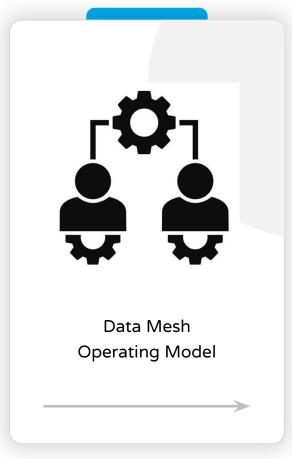


Layer 1: Data Infrastructure and Governance (Transparent and Scalable)

Enterprise Data Platform Journey







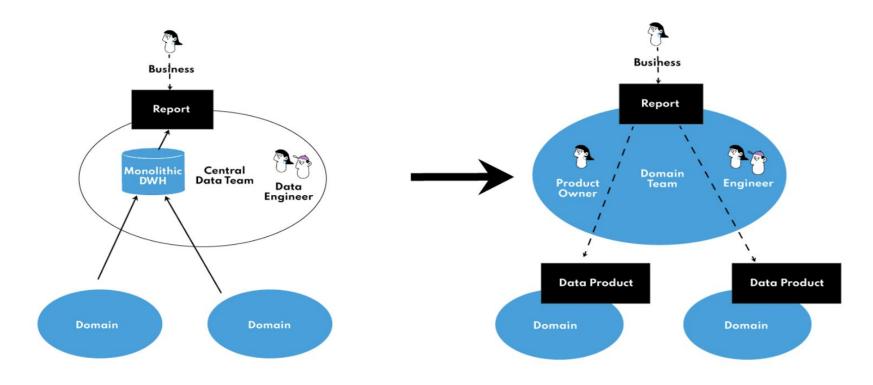
2018

2021

2024 – present

Layer 1: Data Infrastructure and Governance (Transparent and Scalable)

De-centralized Sociotechnical Approach

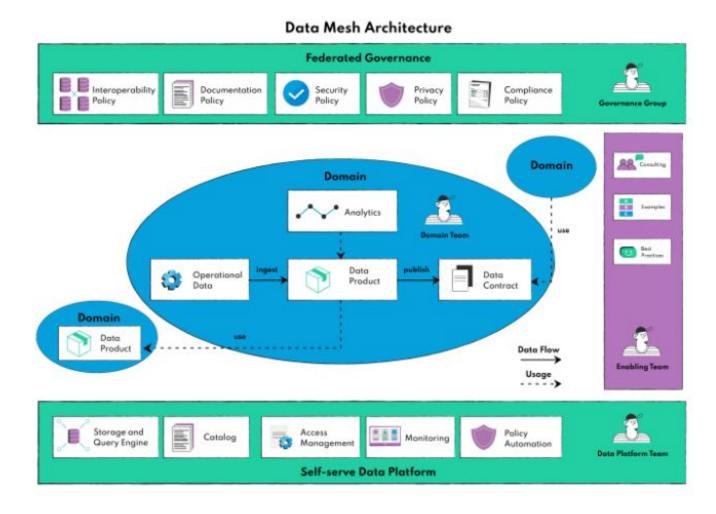


"Data mesh is a decentralized sociotechnical approach to share, access, and manage analytical data in complex and large-scale environments—within or across organizations"

⁻ Dehghani, Zhamak

Layer 1: Data Infrastructure and Governance (Transparent and Scalable)

Data as a Product



Layer 2: Al-driven detection logic and monitoring (Usable and Targeted)

Monitoring Volume of Daily Ingested Data

Algorithm 3 LSTM-Based Data Volume Monitoring

- 1: **Input:** Historical data volumes $V \in \mathbb{R}^n$, external features $X \in \mathbb{R}^{n \times m}$, lag length l
- 2: Normalize V and X using Min-Max scaling
- 3: Prepare lagged sequences of length l for V and X
- 4: Define and compile an LSTM model using Tensor-Flow/Keras
- 5: Train the model on the lagged sequences
- 6: Predict expected volume \hat{v}_t for today
- 7: Compute residual: $r_t = v_t \hat{v}_t$
- 8: Compute the 95th percentile threshold: threshold = $Percentile_{95}(r_t)$
- 9: if $|r_t| >$ threshold then
- 10: Flag t as an anomaly
- 11: end if
- 12: **Output:** Prediction \hat{v}_t , anomaly status

LSTM is the preferred approach to monitor volume given the need for scalability across different tables*

Algorithm 4 SARIMAX-Based Data Volume Monitoring

- 1: **Input:** Historical data volumes $V \in \mathbb{R}^n$, external features for calendar effect $X \in \mathbb{R}^{n \times m}$, SARIMAX parameters (p, d, q, P, D, Q, s)
- 2: Fit a SARIMAX model: $V_t = \phi(V_{t-1},...,V_{t-p},X_t,...,X_{t-m}) + \epsilon_t$
- 3: Forecast expected volume \hat{v}_t
- 4: Compute residual: $r_t = v_t \hat{v}_t$
- 5: Compute the 95th percentile threshold: threshold = $\operatorname{Percentile}_{95}(r_t)$
- 6: if $|r_t| >$ threshold then
- 7: Flag t as an anomaly
- 8: end if
- 9: Output: Prediction \hat{v}_t , anomaly status

SARIMAX is suitable for cases where interpretability and lower computational cost*

*Algorithms cited from IEEE paper we published

Layer 3: Human Context and Expert Validation (Resilient)

Dependency Aware Detection and Customizable Alerts

Algorithm 5 LSTM-Based Anomaly Detection with Expert Opinion

```
1: Input: TRI series \Psi \in \mathbb{R}^n, lag length l, threshold \theta, expert
    validation set E
2: Normalize Ψ using Min-Max scaling
 3: Prepare lagged sequences of length l
4: Define and train an LSTM model on historical TRI data
5: for each time step t in 1, \ldots, n do
        Predict expected TRI: \hat{\Psi}_t = f(\Psi_{t-1}, \dots, \Psi_{t-l})
       Compute residual: r_t = \Psi_t - \hat{\Psi}_t
       if |r_t| > \theta then
           if E_t = 1 (expert confirms valid data) then
10:
                Suppress false alarm
            else
11:
                Flag t as an anomaly
12:
            end if
13:
        end if
15: end for
16: Output: List of detected anomalies with expert correc-
    tions
```

Expert-guided AI quality control, unnecessary alerts are reduced, increasing the system's efficiency*

Algorithm 6 Dependency-Aware Anomaly Detection in TRI

```
1: Input: TRI series \Psi \in \mathbb{R}^{n \times m}, sector mapping \mathcal{I}, thresh-
    old \theta, sector-wide threshold \tau
2: Normalize Ψ using Min-Max scaling
3: Group investments into sectors using predefined mappings
4: for each time step t in 1, \ldots, n do
        for each sector s \in \mathcal{S} do
            Compute sector-wide return S_t^s
            for each investment i \in s do
                Predict expected TRI:
   f(\Psi t - 1^i, \ldots, \Psi_{t-l}^i)
                Compute residual: r_t^i = \Psi_t^i - \hat{\Psi}t^i
                if |r_t^i| > \theta and |S_t^s - S_{t-1}^s| \le \tau then
10:
                    Flag i at time t as an anomaly
11:
                end if
            end for
        end for
15: end for
16: Output: List of detected anomalies
```

Reducing False Alarms by
Analyzing Data
Dependencies*

Goal: Alert when it matters!

Algorithm 7 Customizable Alerting System for TRI Anomalies

```
1: Input: TRI series \Psi, predicted values \hat{\Psi}, user-defined
    severity \theta_s, persistence level p, frequency threshold \tau
2: Initialize breach counter B_w = 0
3: for each time step t in 1, \ldots, n do
       Compute residual: r_t = \Psi_t - \hat{\Psi}_t
       if |r_t| > \theta_s then
           Increment counter B_w = B_w + 1
           if breach persists for p consecutive steps then
               Trigger persistence-based alert
           end if
       end if
10:
       if B_w > \mu_B + \tau then
           Trigger breach frequency alert
13:
       end if
14: end for
15: Output: List of triggered alerts based on user preferences
```

Avoiding Alert Fatigue Through
Customizable Alerting
Mechanisms*

*Algorithms cited from IEEE paper we published

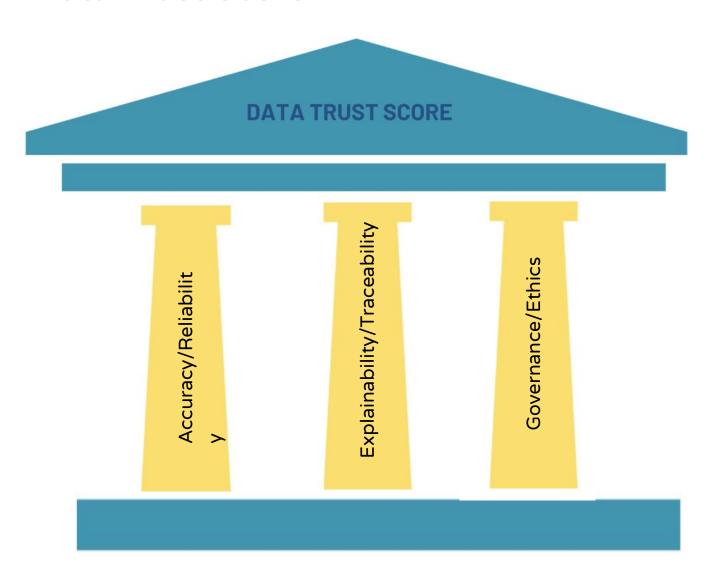
Layer 3: Human Context and Expert Validation (Resilient)

Data Observability

- \square Experts validate anomalies flagged by the system.
- Confirmed expected fluctuations (e.g., known market patterns)
- \square Built a feedback loop to refine detection logic over time.
- This gave end-users confidence that the system aligned with reality.

Monte Carlo Tool

Data Trust Score



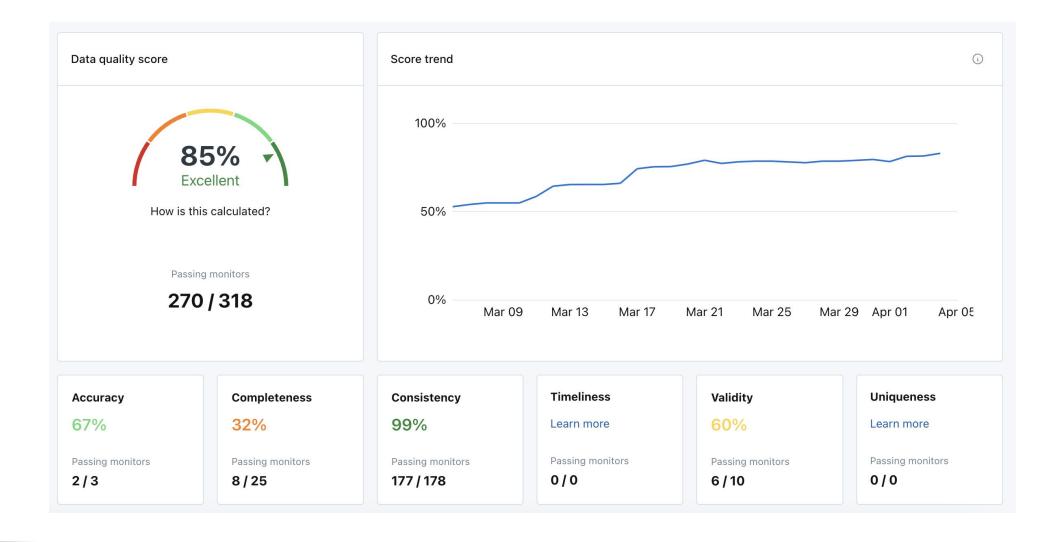
Algorithm 4 Final Data Trust Score Calculation

- 1: Calculate ARS, ETS, and ECGS as described.
- 2: Aggregate the pillar scores:
- 3: $DTS = w_1 \times ARS + w_2 \times ETS + w_3 \times ECGS$

where w_1 , w_2 , and w_3 are adjustable weights that can be customized based on industry requirements.

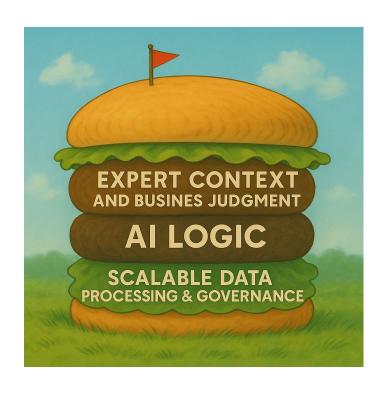
Results

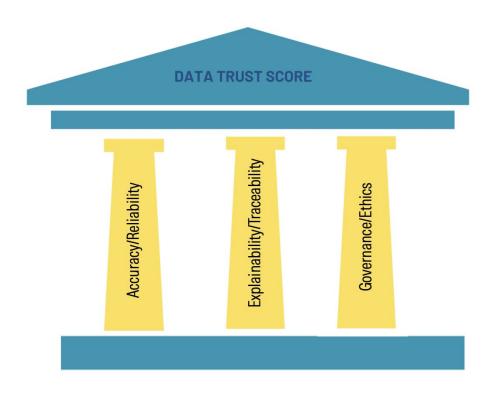
Increased Confidence In Data



"Where is your system leaking trust

Trtosay? feature—it's a design decision. And it must be built in layers.





Thank You!

Establishing Trust in Al-Driven Data Oberservability and
 Quality Control: A Framework for Reliable and Scalable
 Standards

Trust Erosion: 4 Signals Your Data Strategy Is Breaking
Down

(Before Al Fails)

Personal Website

